Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions
نویسندگان
چکیده
In this paper we investigate properties of generalized bent Boolean functions and 2-bent (i.e., negabent, octabent, hexadecabent, et al.) Boolean functions in a uniform framework. We generalize the work of Stǎnicǎ et al., present necessary and sufficient conditions for generalized bent Boolean functions and 2-bent Boolean functions in terms of classical bent functions, and completely characterize these functions in a combinatorial form. The result of this paper further shows that all generalized bent Boolean functions are regular. Index Terms Boolean functions, Walsh-Hadamard transforms, 2-bent functions, generalized bent functions, cyclotomic fields
منابع مشابه
On the Primary Constructions of Vectorial Boolean Bent Functions∗
Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...
متن کاملOn generalized semi-bent (and partially bent) Boolean functions
In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...
متن کاملConstructions of Generalized Bent Boolean Functions on Odd Number of Variables
In this paper, we investigate the constructions of generalized bent Boolean functions defined on with values in Z4. We first present a construction of generalized bent Boolean functions defined on with values in Z4. The main technique is to utilize bent functions to derive generalized bent functions on odd number of variables. In addition, by using Boolean permutations, we provide a specific me...
متن کاملOn cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class
In this paper, we obtain the cross-correlation spectrum of generalized bent Boolean functions in a subclass of MaioranaMcFarland class (GMMF). An affine transformation which preserve the cross-correlation spectrum of two generalized Boolean functions, in absolute value is also presented. A construction of generalized bent Boolean functions in (n+ 2) variables from four generalized Boolean funct...
متن کاملSecondary constructions on generalized bent functions
In this paper, we construct generalized bent Boolean functions in n + 2 variables from 4 generalized Boolean functions in n variables. We also show that the direct sum of two generalized bent Boolean functions is generalized bent. Finally, we identify a set of affine functions in which every function is generalized bent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016